mainAnalysis(header, dataset, flagForSameExp, listOfNormalizations, listOfArgs4norm,
listOfStatTests, listOfArgs4stat, multTestAdj, hitScoringVec1, hitScoringVec2,
posNegFlag, flag4Gsea, vecOfChannels, whichOnto)
generateDatasetFile
generateDatasetFile
ScreenNb
in the dataset file must have the same design (same type and same number of replicates - exact plate layout is irrelevant) so that Spearman's correlation coefficient can be computed between experiments (each with summarized replicates) LiWongRank
, varAdjust
, divNorm
, quantileNormalization
, BScore
, ZScore
, ZScorePerScreen
, subtractBackground
, lowessNorm
, controlNorm
listofnormalizations
, the arguments to be passed on Ttest
, MannWhitney
, RankProduct
listofstattests
, the arguments to be passed on "holm"
, "hochberg"
, "hommel"
, "bonferroni"
, "BH"
, "BY"
, "fdr"
, or "none"
(Type ?p.adjust
for details)) listOfStatTests
. Then, if the option of scoring hits according to p-values and Intensities is chosen (see hitScoringVec1
, for each test, a hit vector is generated. Finally, if the option of scoring hits according to Intensities only is chosen, hit vectors are generated for this option.
"SigIntensity"
or "NbCells"
"biological_process"
, "molecular_function"
or "cellular_component"
- used for the GSEA analysis index.html
and indexnorm.html
containing the quality analysis of raw and normalized data, respectively, and stats.html
, containing the statistical analysis. If several normalization methods are applied, an indexnorm
file is generated after each.
data(exampleHeader, package="RNAither")
data(exampleDataset, package="RNAither")
mainAnalysis(header, dataset, 0, list(controlNorm), list(list(1, 0, "SigIntensity", 1)),
list(Ttest, MannWhitney), list(list("l", 1, "SigIntensity", "GeneName"),
list("l", 1, "SigIntensity", "GeneName")), "none", c(1, 0, 0), c(0.05, 0, 0), 1,
0, c("SigIntensity", "NbCells"), "biological_process")
Run the code above in your browser using DataLab