mainAnalysis(header, dataset, flagForSameExp, listOfNormalizations, listOfArgs4norm,
listOfStatTests, listOfArgs4stat, multTestAdj, hitScoringVec1, hitScoringVec2,
posNegFlag, flag4Gsea, vecOfChannels, whichOnto)generateDatasetFile generateDatasetFile ScreenNb in the dataset file must have the same design (same type and same number of replicates - exact plate layout is irrelevant) so that Spearman's correlation coefficient can be computed between experiments (each with summarized replicates) LiWongRank, varAdjust, divNorm, quantileNormalization, BScore, ZScore, ZScorePerScreen, subtractBackground, lowessNorm, controlNorm listofnormalizations, the arguments to be passed on Ttest, MannWhitney, RankProduct listofstattests, the arguments to be passed on "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", or "none" (Type ?p.adjust for details)) listOfStatTests . Then, if the option of scoring hits according to p-values and Intensities is chosen (see hitScoringVec1 , for each test, a hit vector is generated. Finally, if the option of scoring hits according to Intensities only is chosen, hit vectors are generated for this option.
"SigIntensity" or "NbCells" "biological_process" , "molecular_function" or "cellular_component" - used for the GSEA analysis index.html and indexnorm.html containing the quality analysis of raw and normalized data, respectively, and stats.html, containing the statistical analysis. If several normalization methods are applied, an indexnorm file is generated after each.
data(exampleHeader, package="RNAither")
data(exampleDataset, package="RNAither")
mainAnalysis(header, dataset, 0, list(controlNorm), list(list(1, 0, "SigIntensity", 1)),
list(Ttest, MannWhitney), list(list("l", 1, "SigIntensity", "GeneName"),
list("l", 1, "SigIntensity", "GeneName")), "none", c(1, 0, 0), c(0.05, 0, 0), 1,
0, c("SigIntensity", "NbCells"), "biological_process")
Run the code above in your browser using DataLab