# \donttest{
library(lhs)
library(doParallel)
library(foreach)
### simulation costs ###
cost <- c(1, 3)
### 1-d Perdikaris function in Perdikaris, et al. (2017) ###
# low-fidelity function
f1 <- function(x) {
sin(8 * pi * x)
}
# high-fidelity function
f2 <- function(x) {
(x - sqrt(2)) * (sin(8 * pi * x))^2
}
### training data ###
n1 <- 13
n2 <- 8
### fix seed to reproduce the result ###
set.seed(1)
### generate initial nested design ###
X <- NestedX(c(n1, n2), 1)
X1 <- X[[1]]
X2 <- X[[2]]
### n1 and n2 might be changed from NestedX ###
### assign n1 and n2 again ###
n1 <- nrow(X1)
n2 <- nrow(X2)
y1 <- f1(X1)
y2 <- f2(X2)
### n=100 uniform test data ###
x <- seq(0, 1, length.out = 100)
### fit an RNAmf ###
fit.RNAmf <- RNAmf_two_level(X1, y1, X2, y2, kernel = "sqex")
### predict ###
predy <- predict(fit.RNAmf, x)$mu
predsig2 <- predict(fit.RNAmf, x)$sig2
### active learning with optim=TRUE ###
alm.RNAmf.optim <- ALM_RNAmf(
Xcand = x, fit.RNAmf, cost = cost,
optim = TRUE, parallel = TRUE, ncore = 2
)
print(alm.RNAmf.optim$time) # computation time of optim=TRUE
### active learning with optim=FALSE ###
alm.RNAmf <- ALM_RNAmf(
Xcand = x, fit.RNAmf, cost = cost,
optim = FALSE, parallel = TRUE, ncore = 2
)
print(alm.RNAmf$time) # computation time of optim=FALSE
### visualize ALM ###
oldpar <- par(mfrow = c(1, 2))
plot(x, alm.RNAmf$ALM$ALM1,
type = "l", lty = 2,
xlab = "x", ylab = "ALM criterion at the low-fidelity level",
ylim = c(min(c(alm.RNAmf$ALM$ALM1, alm.RNAmf$ALM$ALM2)),
max(c(alm.RNAmf$ALM$ALM1, alm.RNAmf$ALM$ALM2)))
)
points(alm.RNAmf$chosen$Xnext,
alm.RNAmf$ALM$ALM1[which(x == drop(alm.RNAmf$chosen$Xnext))],
pch = 16, cex = 1, col = "red"
)
plot(x, alm.RNAmf$ALM$ALM2,
type = "l", lty = 2,
xlab = "x", ylab = "ALM criterion at the high-fidelity level",
ylim = c(min(c(alm.RNAmf$ALM$ALM1, alm.RNAmf$ALM$ALM2)),
max(c(alm.RNAmf$ALM$ALM1, alm.RNAmf$ALM$ALM2)))
)
par(oldpar)# }
Run the code above in your browser using DataLab