Learn R Programming

RNAseqNet (version 0.1.5)

GLMnetToGraph: Convert the result of imputedGLMnetwork or a matrix into a network.

Description

GLMnetToGraph combines the m inferred networks, obtained from m imputed datasets, into a single stable network or convert a matrix of coefficients of a GLM model into a network (non zero coefficients are converted to edges)

Usage

GLMnetToGraph(object, threshold = 0.9)

Value

an 'igraph' object. See igraph

Arguments

object

an object of class HDpath as obtained from the function imputedGLMnetwork or a squared matrix with zero and non zero values

threshold

the percentage of times, among the m imputed networks, that an edge has to be predicted to be in the final network. Used only for objects of class HDpath. Default to 0.9

Author

Alyssa Imbert, alyssa.imbert@gmail.comNathalie Vialaneix, nathalie.vialaneix@inrae.fr

References

Imbert, A., Valsesia, A., Le Gall, C., Armenise, C., Lefebvre, G. Gourraud, P.A., Viguerie, N. and Villa-Vialaneix, N. (2018) Multiple hot-deck imputation for network inference from RNA sequencing data. Bioinformatics. tools:::Rd_expr_doi("10.1093/bioinformatics/btx819").

See Also

imputedGLMnetwork, igraph

Examples

Run this code
data(lung)
data(thyroid)
nobs <- nrow(lung)
miss_ind <- sample(1:nobs, round(0.2 * nobs), replace = FALSE)
lung[miss_ind, ] <- NA
lung <- na.omit(lung)
lambdas <- 4 * 10^(seq(0, -2, length = 10))
if (FALSE) {
lung_hdmi <- imputedGLMnetwork(lung, thyroid, sigma = 2, lambdas = lambdas,
                               m = 10, B = 5)
lung_net <- GLMnetToGraph(lung_hdmi, 0.75)
lung_net
plot(lung_net)
}

Run the code above in your browser using DataLab