Learn R Programming

RNAseqNet (version 0.1.5)

imputedGLMnetwork: Multiple hot-deck imputation and network inference from RNA-seq data.

Description

imputedGLMnetwork performs a multiple hot-deck imputation and infers a network for each imputed dataset with a log-linear Poisson graphical model (LLGM).

Usage

imputedGLMnetwork(X, Y, sigma, m = 50, lambdas = NULL, B = 20)

Value

S3 object of class HDpath: a list consisting of

path

a list of m data frames, each containing the adjacency matrix of the inferred network obtained from the corresonding imputed dataset. The regularization parameter is selected by StARS

efreq

a numeric matrix of size p x p, which indicates the number of times an edge has been predicted among the m inferred networks

Arguments

X

n x p numeric matrix containing RNA-seq expression with missing rows (numeric matrix or data frame)

Y

auxiliary dataset (n' x q numeric matrix or data frame)

sigma

affinity threshold for donor pool

m

number of replicates in multiple imputation (integer). Default to 50

lambdas

a sequence of decreasing positive numbers to control the regularization (numeric vector). Default to NULL

B

number of iterations for stability selection. Default to 20

Author

Alyssa Imbert, alyssa.imbert@gmail.comNathalie Vialaneix, nathalie.vialaneix@inrae.fr

Details

When input lambdas are null the default sequence of glmnet for the first model (the one with the first column of count as the target) is used. A common default sequence is generated for all imputed datasets using this method.

References

Imbert, A., Valsesia, A., Le Gall, C., Armenise, C., Lefebvre, G. Gourraud, P.A., Viguerie, N. and Villa-Vialaneix, N. (2018) Multiple hot-deck imputation for network inference from RNA sequencing data. Bioinformatics. tools:::Rd_expr_doi("10.1093/bioinformatics/btx819").

Examples

Run this code
data(lung)
data(thyroid)
nobs <- nrow(lung)
miss_ind <- sample(1:nobs, round(0.2 * nobs), replace = FALSE)
lung[miss_ind, ] <- NA
lung <- na.omit(lung)
lambdas <- 4 * 10^(seq(0, -2, length = 10))
if (FALSE) {
lung_hdmi <- imputedGLMnetwork(lung, thyroid, sigma = 2, lambdas = lambdas,
                               m = 10, B = 5)
}

Run the code above in your browser using DataLab