powered by
For each level of the grouping variable, the gene-wise median over all samples is computed to obtain a reference sample. Then, each sample is plotted against the reference.
plot_sample_MAs(vsd, group, y_lim = 3, rasterise = FALSE, ...)
A list of ggplot objects of the ggplot2 package, with each element corresponding to one MA-plot.
An object generated by DESeq2::vst()
DESeq2::vst()
A grouping variable, must be a column of colData(vsd)
colData(vsd)
Y-axis limits, the axis will run from -y_lim to y_lim
-y_lim
y_lim
Whether to rasterise the points using ggrastr.
Other parameters passed on to ggrastr::rasterise
library("DESeq2") set.seed(1) dds <- makeExampleDESeqDataSet(n=1000, m=4, interceptMean=10) colData(dds)$type <- c("A","A","B","B") vsd <- vst(dds) plot_sample_MAs(vsd, group="type")
Run the code above in your browser using DataLab