#
# Look at a true lognorma density & related dew
#
r = 0.05
y = 0.03
s0 = 1000
sigma = 0.25
te = 100/365
strikes = seq(from=600, to = 1400, by = 1)
v = sqrt(exp(sigma^2 * te) - 1)
ln.skew = 3 * v + v^3
ln.kurt = 16 * v^2 + 15 * v^4 + 6 * v^6 + v^8
skew.4 = ln.skew * 1.50
kurt.4 = ln.kurt * 1.50
skew.5 = ln.skew * 0.50
kurt.5 = ln.kurt * 2.00
ew.density.4 = dew(x=strikes, r=r, y=y, te=te, s0=s0, sigma=sigma,
skew=skew.4, kurt=kurt.4)
ew.density.5 = dew(x=strikes, r=r, y=y, te=te, s0=s0, sigma=sigma,
skew=skew.5, kurt=kurt.5)
bsm.density = dlnorm(x = strikes, meanlog = log(s0) + (r - y - (sigma^2)/2)*te,
sdlog = sigma*sqrt(te), log = FALSE)
matplot(strikes, cbind(bsm.density, ew.density.4, ew.density.5), type="l",
lty=c(1,1,1), col=c("black","red","blue"),
main="Black = BSM, Red = EW 1.5 Times, Blue = EW 0.50 & 2")
Run the code above in your browser using DataLab