dgb is the probability density function of generalized beta distribution.
Usage
dgb(x, a, b, v, w)
Arguments
x
value at which the denisty is to be evaluated
a
power parameter > 0
b
scale paramter > 0
v
first beta paramter > 0
w
second beta parameter > 0
Value
Details
Let B be a beta random variable with parameters v and w, then $Z = b(B/(1-B))^{1/a}$
is a generalized beta with parameters (a,b,v,w).
References
R.M. Bookstaber and J.B. McDonald (1987)
A general distribution for describing security price returns.
Journal of Business, 60, 401-424
X. Liu and M.B. Shackleton and S.J. Taylor and X. Xu (2007)
Closed-form transformations from risk-neutral to real-world distributions
Journal of Business, 60, 401-424
E. Jondeau and S. Poon and M. Rockinger (2007):
Financial Modeling Under Non-Gaussian Distributions
Springer-Verlag, London
## Just simple plot of the density#x = seq(from = 500, to = 1500, length.out = 10000)
a = 10b = 1000v = 3w = 3dx = dgb(x = x, a = a, b = b, v = v, w = w)
plot(dx ~ x, type="l")