Learn R Programming

RND (version 1.2)

price.bsm.option: Price BSM Option

Description

bsm.option.price computes the BSM European option prices.

Usage

price.bsm.option(s0, k, r, te, sigma, y)

Arguments

s0
current asset value
k
strike
r
risk free rate
te
time to expiration
sigma
volatility
y
dividend yield

Value

Details

This function implements the classic Black-Scholes-Merton option pricing model.

References

E. Jondeau and S. Poon and M. Rockinger (2007): Financial Modeling Under Non-Gaussian Distributions Springer-Verlag, London

J. Hull (2011) Options, Futures, and Other Derivatives and DerivaGem Package Prentice Hall, Englewood Cliffs, New Jersey, 8th Edition

R. L. McDonald (2013) Derivatives Markets Pearson, Upper Saddle River, New Jersey, 3rd Edition

Examples

Run this code
#
# call should be 4.76, put should be 0.81, from Hull 8th, page 315, 316
#

r     = 0.10
te    = 0.50
s0    = 42
k     = 40
sigma = 0.20
y     = 0

bsm.option = price.bsm.option(r =r, te = te, s0 = s0, k = k, sigma = sigma, y = y)
bsm.option

#
# Make sure put-call parity holds, Hull 8th, page 351
#

(bsm.option$call - bsm.option$put) - (s0 * exp(-y*te) - k * exp(-r*te))

Run the code above in your browser using DataLab