# import and attach the data example
data(DLBCLpatients)
data(DLBCLgenes)
# In this exemple, we only reduce the number
# of features and iterations for time-saving
DLBCLgenes <- DLBCLgenes[,1:1000] # 1000 first features
N.iterations <- 5
# If we define a priori the tuning parameter at 10.
res <- boot.ROC(status=DLBCLpatients$f,
features=DLBCLgenes, N.boot=N.iterations,
precision=seq(0.05, 0.95, by=0.10), lambda1=10)
# The regression coefficients associated
# with the logistic regression with lasso penalty
coefficients(res$Model, "all")
res$Coef
# The distribution of the prognostic score
hist(res$Signature, nclass=30, main="",
xlab="Observed values of the multivariate signature")
# Illustrations of the ROC curve
plot(res$ROC.Apparent$FPR, 1-res$ROC.Apparent$FNR,
type="b", pch=1, lty=1, ylim=c(0,1), xlim=c(0,1),
ylab="True Positive Rates",
xlab="False Positive Rates")
lines(res$ROC.CV$FPR, 1-res$ROC.CV$FNR,
type="b", pch=2, lty=2)
lines(res$ROC.632$FPR, 1-res$ROC.632$FNR,
type="b", pch=3, lty=3)
lines(res$ROC.632p$FPR, 1-res$ROC.632p$FNR,
type="b", pch=4, lty=4)
legend("bottomright",
paste(c("Apparent", "CV", "0.632", "0.632+"),
"curve (AUC=", round(res$AUC,2), ")"), pch=1:4,
lty=1:4)Run the code above in your browser using DataLab