powered by
Exponential distribution in OOP way. Based on AbstractDist
ROOPSD::AbstractDist -> Exponential
ROOPSD::AbstractDist
Exponential
rate
[double] rate of the exponential law
params
[vector] params of the exponential law
Exponential$new()
Exponential$clone()
Inherited methods ROOPSD::AbstractDist$cdf() ROOPSD::AbstractDist$density() ROOPSD::AbstractDist$diagnostic() ROOPSD::AbstractDist$fit() ROOPSD::AbstractDist$icdf() ROOPSD::AbstractDist$isf() ROOPSD::AbstractDist$logdensity() ROOPSD::AbstractDist$pdeltaCI() ROOPSD::AbstractDist$qdeltaCI() ROOPSD::AbstractDist$qgradient() ROOPSD::AbstractDist$rvs() ROOPSD::AbstractDist$sf()
ROOPSD::AbstractDist$cdf()
ROOPSD::AbstractDist$density()
ROOPSD::AbstractDist$diagnostic()
ROOPSD::AbstractDist$fit()
ROOPSD::AbstractDist$icdf()
ROOPSD::AbstractDist$isf()
ROOPSD::AbstractDist$logdensity()
ROOPSD::AbstractDist$pdeltaCI()
ROOPSD::AbstractDist$qdeltaCI()
ROOPSD::AbstractDist$qgradient()
ROOPSD::AbstractDist$rvs()
ROOPSD::AbstractDist$sf()
new()
Create a new Exponential object.
Exponential$new(rate = 1)
[double] Rate of the exponential law
A new `Exponential` object.
clone()
The objects of this class are cloneable with this method.
Exponential$clone(deep = FALSE)
deep
Whether to make a deep clone.
See AbstractDist for generic methods
## Generate sample rate = 0.5 expl = ROOPSD::Exponential$new( rate = rate ) X = expl$rvs( n = 1000 ) ## And fit parameters expl$fit(X)
Run the code above in your browser using DataLab