powered by
GEV distribution in OOP way. Based on AbstractDist
ROOPSD::AbstractDist -> GEV
ROOPSD::AbstractDist
GEV
loc
[double] location of the GEV law
scale
[double] scale of the GEV law
shape
[double] shape of the GEV law
params
[vector] params of the GEV law
GEV$new()
GEV$qgradient()
GEV$pgradient()
GEV$clone()
Inherited methods ROOPSD::AbstractDist$cdf() ROOPSD::AbstractDist$density() ROOPSD::AbstractDist$diagnostic() ROOPSD::AbstractDist$fit() ROOPSD::AbstractDist$icdf() ROOPSD::AbstractDist$isf() ROOPSD::AbstractDist$logdensity() ROOPSD::AbstractDist$pdeltaCI() ROOPSD::AbstractDist$qdeltaCI() ROOPSD::AbstractDist$rvs() ROOPSD::AbstractDist$sf()
ROOPSD::AbstractDist$cdf()
ROOPSD::AbstractDist$density()
ROOPSD::AbstractDist$diagnostic()
ROOPSD::AbstractDist$fit()
ROOPSD::AbstractDist$icdf()
ROOPSD::AbstractDist$isf()
ROOPSD::AbstractDist$logdensity()
ROOPSD::AbstractDist$pdeltaCI()
ROOPSD::AbstractDist$qdeltaCI()
ROOPSD::AbstractDist$rvs()
ROOPSD::AbstractDist$sf()
new()
Create a new GEV object.
GEV$new(loc = 0, scale = 1, shape = -0.1)
[double] location parameter
[double] scale parameter
[double] shape parameter
A new `GEV` object.
qgradient()
Gradient of the quantile function
GEV$qgradient(p, lower.tail = TRUE)
p
[vector] Probabilities
lower.tail
[bool] If CDF or SF.
[vector] gradient
pgradient()
Gradient of the CDF function
GEV$pgradient(x, lower.tail = TRUE)
x
[vector] Quantiles
clone()
The objects of this class are cloneable with this method.
GEV$clone(deep = FALSE)
deep
Whether to make a deep clone.
See AbstractDist for generic methods
## Generate sample loc = 0 scale = 0.5 shape = -0.3 gev = ROOPSD::GEV$new( loc = loc , scale = scale , shape = shape ) X = gev$rvs( n = 1000 ) ## And fit parameters gev$fit(X)
Run the code above in your browser using DataLab