powered by
GPD distribution in OOP way. Based on AbstractDist
ROOPSD::AbstractDist -> GPD
ROOPSD::AbstractDist
GPD
loc
[double] location of the GPD law, fixed
scale
[double] scale of the GPD law
shape
[double] shape of the GPD law
params
[vector] params of the GPD law
GPD$new()
GPD$fit()
GPD$clone()
Inherited methods ROOPSD::AbstractDist$cdf() ROOPSD::AbstractDist$density() ROOPSD::AbstractDist$diagnostic() ROOPSD::AbstractDist$icdf() ROOPSD::AbstractDist$isf() ROOPSD::AbstractDist$logdensity() ROOPSD::AbstractDist$pdeltaCI() ROOPSD::AbstractDist$qdeltaCI() ROOPSD::AbstractDist$qgradient() ROOPSD::AbstractDist$rvs() ROOPSD::AbstractDist$sf()
ROOPSD::AbstractDist$cdf()
ROOPSD::AbstractDist$density()
ROOPSD::AbstractDist$diagnostic()
ROOPSD::AbstractDist$icdf()
ROOPSD::AbstractDist$isf()
ROOPSD::AbstractDist$logdensity()
ROOPSD::AbstractDist$pdeltaCI()
ROOPSD::AbstractDist$qdeltaCI()
ROOPSD::AbstractDist$qgradient()
ROOPSD::AbstractDist$rvs()
ROOPSD::AbstractDist$sf()
new()
Create a new GPD object.
GPD$new(loc = 0, scale = 1, shape = -0.1)
[double] location parameter
[double] scale parameter
[double] shape parameter
A new `GPD` object.
fit()
Fit method
GPD$fit(Y, loc = NULL)
Y
[vector] Dataset to infer the histogram
[double] location parameter, if NULL used min(Y)
`self`
clone()
The objects of this class are cloneable with this method.
GPD$clone(deep = FALSE)
deep
Whether to make a deep clone.
See AbstractDist for generic methods
## Generate sample loc = 0 scale = 0.5 shape = -0.3 gpd = ROOPSD::GPD$new( loc = loc , scale = scale , shape = shape ) X = gpd$rvs( n = 1000 ) ## And fit parameters gpd$fit( X , loc = 0 )
Run the code above in your browser using DataLab