
Last chance! 50% off unlimited learning
Sale ends in
pePathway-class
objectpePathway-class
object
peNodeRenderInfo(x, y = "Pert", input.shape = "box", default.shape = "ellipse", pos.col = "red", neg.col = "blue", zero.col = "white")
pePathway-class
Pert, Acc
or input
; see pePathway-class
)y
factory
factory
factor equal to zeronodeRenderInfo
nodeRenderInfo
,par
# load experiment
load(system.file("extdata/E-GEOD-21942.topTable.RData", package = "ROntoTools"))
fc <- top$logFC[top$adj.P.Val <= .01]
names(fc) <- top$entrez[top$adj.P.Val <= .01]
ref <- top$entrez
# load the set of pathways
kpg <- keggPathwayGraphs("hsa")
kpg <- setEdgeWeights(kpg)
kpg <- setNodeWeights(kpg, defaultWeight = 1)
# perform the pathway analysis
peRes <- pe(fc, graphs = kpg, ref = ref, nboot = 100, verbose = TRUE)
p <- peRes@pathways[[50]]
g <- layoutGraph(p@map, layoutType = "dot")
graphRenderInfo(g) <- list(fixedsize = FALSE)
edgeRenderInfo(g) <- peEdgeRenderInfo(p)
nodeRenderInfo(g) <- peNodeRenderInfo(p)
# notice the different type of nodes in the graph (box/circle)
# the color of each node represents the perturbation (red = positive, blue = negative)
# the shade represents the stregth of the perturbation
renderGraph(g)
nodeRenderInfo(g) <- peNodeRenderInfo(p, "Acc")
# now, the color of each node represents the accumulation (red = positive, blue = negative)
# notice that square nodes with no parents have no accumulation
renderGraph(g)
Run the code above in your browser using DataLab