Note: if including known measurement error, the model fit incorporates this known error and, in addition, estimates an unknown, nuisance contribution to measurement error. The current implementation does not differentiate between the two, so, for instance, it is not possible to estimate the nuisance measurement error without providing the known, intraspecific error values.
For single-regime fits without measurement error, par
takes the default values of var(data)/max(nodeHeights(phylo))
for sig2 and 0 for either S
for the matching competition model,
b
for the linear diversity dependence model, or r
for the exponential diversity dependence model. Values can be manually entered as a vector with the first element
equal to the desired starting value for sig2 and the second value equal to the desired starting value for either S
, b
, or r
. Note: since likelihood optimization
uses sig rather than sig2, and since the starting value for is exponentiated to stabilize the likelihood search, if you input a par
value, the first value specifying sig2
should be the log(sqrt()) of the desired sig2 starting value.
For two-regime fits without measurement error, the second and third values for par
correspond to the first and second S
, b
, or r
value (run trial fit to see which regime corresponds to each slope).
For fits including measurement error, the default starting value for sig2 is 0.95*var(data)/max(nodeHeights(phylo))
, and nuisance values start at 0.05*var(data)/max(nodeHeights(phylo))
.
In all cases, the nuisance parameter is the last in the par
vector, with the order of other variables as described above.
For two-regime fits, particularly under the matching competition model, we recommend fitting with several different starting values.