Partial dependence plot gives a graphical depiction of the marginal effect of a variable on the class probability (classification) or response (regression).

```
# S3 method for RRF
partialPlot(x, pred.data, x.var, which.class,
w, plot = TRUE, add = FALSE,
n.pt = min(length(unique(pred.data[, xname])), 51),
rug = TRUE, xlab=deparse(substitute(x.var)), ylab="",
main=paste("Partial Dependence on", deparse(substitute(x.var))),
...)
```

x

an object of class `RRF`

, which contains a
`forest`

component.

pred.data

a data frame used for contructing the plot, usually the training data used to contruct the random forest.

x.var

name of the variable for which partial dependence is to be examined.

which.class

For classification data, the class to focus on (default the first class).

w

weights to be used in averaging; if not supplied, mean is not weighted

plot

whether the plot should be shown on the graphic device.

add

whether to add to existing plot (`TRUE`

).

n.pt

if `x.var`

is continuous, the number of points on the
grid for evaluating partial dependence.

rug

whether to draw hash marks at the bottom of the plot
indicating the deciles of `x.var`

.

xlab

label for the x-axis.

ylab

label for the y-axis.

main

main title for the plot.

...

other graphical parameters to be passed on to `plot`

or `lines`

.

A list with two components: `x`

and `y`

, which are the values
used in the plot.

The function being plotted is defined as:
$$
\tilde{f}(x) = \frac{1}{n} \sum_{i=1}^n f(x, x_{iC}),
$$
where \(x\) is the variable for which partial dependence is sought,
and \(x_{iC}\) is the other variables in the data. The summand is
the predicted regression function for regression, and logits
(i.e., log of fraction of votes) for `which.class`

for
classification:
$$ f(x) = \log p_k(x) - \frac{1}{K} \sum_{j=1}^K \log p_j(x),$$
where \(K\) is the number of classes, \(k\) is `which.class`

,
and \(p_j\) is the proportion of votes for class \(j\).

Friedman, J. (2001). Greedy function approximation: the gradient
boosting machine, *Ann. of Stat.*

# NOT RUN { data(airquality) airquality <- na.omit(airquality) set.seed(131) ozone.rf <- RRF(Ozone ~ ., airquality) partialPlot(ozone.rf, airquality, Temp) data(iris) set.seed(543) iris.rf <- RRF(Species~., iris) partialPlot(iris.rf, iris, Petal.Width, "versicolor") # }