# generate first RR predictor
dat <- RRgen(n=500, pi=.3, model="Warner", p=.3)
# generate a second RR predictor (forced response design)
dat2 <- RRgen(n=500, pi=c(.4,.6), model="FR", p=c(.1,.15))
dat$FR <- dat2$response
dat$trueFR <- dat2$true
# generate a third, continuous predictor
dat$nonRR <- rnorm(500, 5, 1)
# compute dependent variable as linear combination of predictors
dat$depvar <- 2*dat$true - 3*dat2$true + .5*dat$nonRR +rnorm(500, 1, 7)
# analyze with RRlin
linreg <- RRlin(depvar~response+FR+nonRR, data=dat,
models=c("Warner","FR"),p.list=list(.3, c(.1,.15)))
summary(linreg)
# compare results to coeeficients of an ordinary linear regression
summary(lm(depvar~true +trueFR+nonRR, data=dat))Run the code above in your browser using DataLab