# generate data with a level-1 predictor
d <- data.frame(group=factor(rep(LETTERS[1:20],each=50)),
cov=rnorm(20*50))
# generate dependent data based on logistic model (random intercept):
d$true <- simulate(~ cov + (1|group), newdata=d,
family=binomial(link="logit"),
newparams=list(beta=c("(Intercept)"=-.5, cov=1),
theta=c("group.(Intercept)"=.8)))[[1]]
# scramble responses using RR:
model <- "FR"
p <- c(true0=.1, true1=.2)
d$resp <- RRgen(model="FR", p=p, trueState=d$true)$response
# fit model:
mod <- RRmixed(resp ~ cov +(1|group), data=d, model="FR", p=p)
summary(mod)Run the code above in your browser using DataLab