# generate two RR predictors
dat <- RRgen(n = 500, pi = .4, model = "Warner", p = .3)
dat2 <- RRgen(n = 500, pi = c(.4, .6), model = "FR", p = c(.1, .15))
dat$FR <- dat2$response
dat$trueFR <- dat2$true
# generate a third predictor and continuous dependent variables
dat$nonRR <- rnorm(500, 5, 1)
dat$depvar <- 2 * dat$true - 3 * dat2$true +
.5 * dat$nonRR + rnorm(500, 1, 7)
# use RRlin and compare to regression on non-RR variables
linreg <- RRlin(depvar ~ response + FR + nonRR,
data = dat,
models = c("Warner", "FR"),
p.list = list(.3, c(.1, .15)), fit.n = 1
)
summary(linreg)
summary(lm(depvar ~ true + trueFR + nonRR, data = dat))
Run the code above in your browser using DataLab