# generate data with a level-1 predictor
set.seed(1234)
d <- data.frame(
group = factor(rep(LETTERS[1:20], each = 50)),
cov = rnorm(20 * 50)
)
# generate dependent data based on logistic model (random intercept):
d$true <- simulate(~ cov + (1 | group),
newdata = d,
family = binomial(link = "logit"),
newparams = list(
beta = c("(Intercept)" = -.5, cov = 1),
theta = c("group.(Intercept)" = .8)
)
)[[1]]
# scramble responses using RR:
model <- "FR"
p <- c(true0 = .1, true1 = .2)
d$resp <- RRgen(model = "FR", p = p, trueState = d$true)$response
# fit model:
mod <- RRmixed(resp ~ cov + (1 | group), data = d, model = "FR", p = p)
summary(mod)
Run the code above in your browser using DataLab