Learn R Programming

RSDA (version 1.1)

R2.U: Upper boundary correlation coefficient.

Description

Compute the upper boundary correlation coefficient for two interval variables.

Usage

R2.U(sym.var, prediction)

Arguments

sym.var
Variable that was predicted.
prediction
The prediction given by the model.

Value

  • The upper boundary correlation coefficient.

References

LIMA-NETO, E.A., DE CARVALHO, F.A.T., (2008). Centre and range method to fitting a linear regression model on symbolic interval data. Computational Statistics and Data Analysis 52, 1500-1515. LIMA-NETO, E.A., DE CARVALHO, F.A.T., (2010). Constrained linear regression models for symbolic interval-valued variables. Computational Statistics and Data Analysis 54, 333-347.

See Also

sym.glm

Examples

Run this code
data(int_prost_train)
data(int_prost_test)
res.cm<-sym.lm(lpsa~.,sym.data=int_prost_train,method='cm')
pred.cm<-predictsym.lm(res.cm,int_prost_test,method='cm')
R2.U(sym.var(int_prost_test,9),pred.cm$Fitted)

res.cm.lasso<-sym.glm(sym.data=int_prost_train,response=9,method='cm',
                      alpha=1,nfolds=10,grouped=TRUE)
pred.cm.lasso<-predictsym.glm(res.cm.lasso,response=9,int_prost_test,method='cm')
R2.U(sym.var(int_prost_test,9),pred.cm.lasso)

Run the code above in your browser using DataLab