Learn R Programming

RSDA (version 1.1)

sym.hclust: Symbolic Hierarchical Clustering

Description

This function allows us to execute a symbolic hierarchical clustering to interval variables.

Usage

sym.hclust(sym.data, distance = c("hausdorff", "centers"), p = 2, 
                  method = c("ward", "single", "complete", "average", "mcquitty", 
                  "median", "centroid"), members = NULL)

Arguments

sym.data
The symbolic data table.
distance
The distance to be use.
p
The p in the Hausdorff distance $$d(w_{u_1},w_{u_2}) = \left( \sum_{j=1}^m \Phi_j(w_{u_1},w_{u_2})^p \right)^{1/p}$$
method
The method to be use, like in hclust R function.
members
Like in hclust R function.

Value

  • Return a dendogram plot structure.

References

Carvalho F., Souza R.,Chavent M., and Lechevallier Y. (2006) Adaptive Hausdorff distances and dynamic clustering of symbolic interval data. Pattern Recognition Letters Volume 27, Issue 3, February 2006, Pages 167-179

Rodriguez, O. (2000). Classification et Modeles Lineaires en Analyse des Donnees Symboliques. Ph.D. Thesis, Paris IX-Dauphine University.

Examples

Run this code
data(oils)
sh<-sym.hclust(oils)
plot(sh)
sh<-sym.hclust(oils,'centers')
plot(sh)

Run the code above in your browser using DataLab