This function allows us to execute a symbolic hierarchical clustering to interval
variables.
Usage
sym.hclust(sym.data, distance = c("hausdorff", "centers"), p = 2,
method = c("ward", "single", "complete", "average", "mcquitty",
"median", "centroid"), members = NULL)
Arguments
sym.data
The symbolic data table.
distance
The distance to be use.
p
The p in the Hausdorff distance
$$d(w_{u_1},w_{u_2}) = \left( \sum_{j=1}^m \Phi_j(w_{u_1},w_{u_2})^p \right)^{1/p}$$
method
The method to be use, like in hclust R function.
members
Like in hclust R function.
Value
Return a dendogram plot structure.
References
Carvalho F., Souza R.,Chavent M., and Lechevallier Y. (2006)
Adaptive Hausdorff distances and dynamic clustering of symbolic interval data. Pattern
Recognition Letters Volume 27, Issue 3, February 2006, Pages 167-179
Rodriguez, O. (2000).
Classification et Modeles Lineaires en Analyse des Donnees Symboliques. Ph.D. Thesis,
Paris IX-Dauphine University.