Learn R Programming

RSDA (version 2.0.7)

sym.dist.interval: Distance for Symbolic Interval Variables.

Description

This function computes and returns the distance matrix by using the specified distance measure to compute distance between symbolic interval variables.

Usage

sym.dist.interval(sym.data, gamma = 0.5, method = "Minkowski",
  normalize = TRUE, SpanNormalize = FALSE, q = 1, euclidea = TRUE,
  pond = rep(1, length(variables)))

Arguments

sym.data

A symbolic object

gamma

gamma value for the methods ichino and minkowski.

method

Method to use (Gowda.Diday, Ichino, Minkowski, Hausdorff)

normalize

A logical value indicating whether normalize the data in the ichino or hausdorff method.

SpanNormalize

A logical value indicating whether

q

q value for the hausdorff method.

euclidea

A logical value indicating whether use the euclidean distance.

pond

A numeric vector

variables

Numeric vector with the number of the variables to use.

Value

An object of class 'dist'

Examples

Run this code
# NOT RUN {
data('table7')
ex3 <- classic.to.sym(table7, concept=c('Animal'),variables = c(Height, Weight)
,variables.types=c(Height = type.interval(), Weight = type.interval()))
sym.dist.interval(ex3,method='Gowda.Diday',normalize=FALSE)
sym.dist.interval(ex3,gamma=0.5,method='Ichino',normalize=FALSE)
sym.dist.interval(ex3,gamma=0.5,method='Minkowski',normalize=FALSE,q=1)
sym.dist.interval(ex3,gamma=0.5,method='Minkowski',normalize=FALSE,q=2)
sym.dist.interval(ex3,gamma=0.5,method='Hausdorff',normalize=FALSE,
SpanNormalize=FALSE,euclidea=TRUE)
sym.dist.interval(ex3,gamma=0.5,method='Hausdorff',normalize=FALSE,
SpanNormalize=TRUE,euclidea=TRUE)
# }

Run the code above in your browser using DataLab