Learn R Programming

RSDA (version 2.0.7)

sym.mds: Symbolic Multidemensional Scaling

Description

This function execute a multidimensional scaling from a interval symbolic data matrix.

Usage

sym.mds(sym.data, distance = c('hausdorff', 'centers'), p = 2,
method = c('classic', 'INTERSCAL'))

Arguments

sym.data

The symbolic data matrix.

distance

The distance to be use.

p

The p in the Hausdorff distance

$$d(w_{u_1},w_{u_2}) = \left( \sum_{j=1}^m \Phi_j(w_{u_1},w_{u_2})^p \right)^{1/p}$$

method

The method to be used.

Value

Return the coordanates to plot the graphic.

References

Groenen, P.J.F., Winsberg, S., Rodriguez, O., Diday, E. (2006). I-Scal: Multidimensional scaling of interval dissimilarities. Computational Statistics and Data Analysis, 51, 360-378.

Rodriguez, O. (2000). Classification et Modeles Lineaires en Analyse des Donnees Symboliques. Ph.D. Thesis, Paris IX-Dauphine University.

See Also

sym.interval.pca

Examples

Run this code
# NOT RUN {
data(oils)
res<-sym.mds(oils)
plot(res,pch = 23, bg = 'red', xlab = 'Score 1', ylab = 'Score 2')
res<-sym.mds(oils,distance='centers')
plot(res,pch = 23, bg = 'red', xlab = 'Score 1', ylab = 'Score 2')
# }

Run the code above in your browser using DataLab