powered by
Compute a distance matrix from a symbolic interval data matrix.
interval.dist(sym.data, distance = c('hausdorff', 'centers', 'interscal'), p = 2)
Symbolic data matrix with the variables of interval type.
The distance to be use.
The p in the Hausdorff distance :
$$d(w_{u_1},w_{u_2}) = \left( \sum_{j=1}^m \Phi_j(w_{u_1},w_{u_2})^p \right)^{1/p}$$
Return a R distance triangular matrix.
Groenen, P.J.F., Winsberg, S., Rodriguez, O., Diday, E. (2006). I-Scal: Multidimensional scaling of interval dissimilarities. Computational Statistics and Data Analysis, 51, 360-378.
Billard L. and Diday E. (2006). Symbolic data analysis: Conceptual statistics and data mining. Wiley, Chichester.
# NOT RUN { data(VeterinaryData) VD <- VeterinaryData interval.dist(VD) interval.dist(VD,distance='centers') # }
Run the code above in your browser using DataLab