dt = 0.001
t = seq(0, 6, by=dt)
x = 6*sin(2*pi*50*t) + 10* sin(2*pi*120*t)
y = x + rnorm(length(x), mean=0, sd=10)
plot(t,y, type='l')
title('sin(2*pi*50*t) + sin(2*pi*120*t)+ rnorm')
Y = fft(y)
Pyy = Y * Conj(Y)
N = length(y)
n = length(Pyy)/2
Syy = (Mod(Pyy[1:n])^2)/N
fn = 1/(2*dt)
f = (0:(length(Syy)-1))*fn/length(Syy)
plot(f, Syy, type='l', log='y' , xlim=c(0, 150));
abline(v=c(50, 120),col='blue', lty=2)
plot(f, Syy, type='l', log='y' , xlim=c(0, 150));
abline(v=c(50, 120),col='blue', lty=2)
win=1024
inc=min(24, floor(length(y)/30))
coef=2048
w<-setwelch(y, win=win, inc=inc, coef=coef, wintaper=0.2)
KK = apply(w$values, 2, FUN="mean")
fw=seq(from=0, to=0.5, length=coef)/(dt)
plot(fw, KK^2, log='', type='l' , xlim=c(0, 150)) ;
abline(v=c(50, 120), col='blue', lty=2)
Wyy = (KK^2)/w$windowsize
plot(f, Syy, type='l', log='y' , xlim=c(0, 150))
lines(fw,Wyy , col='red')
DBSYY = 20*log10(Syy/max(Syy))
DBKK =20*log10(Wyy/max(Wyy))
plot(f, DBSYY, type='l' , xlim=c(0, 150), ylab="Db", xlab="Hz")
lines(fw, DBKK, col='red')
title("Compare simple periodogam with Welch's Method")
Run the code above in your browser using DataLab