Implementation for the Linear TSVM. This method is mostly for debugging purposes and does not allow for the balancing constraint or kernels, like the TSVM function.
LinearTSVM(X, y, X_u, C, Cstar, s = 0, x_center = FALSE, scale = FALSE,
eps = 1e-06, verbose = FALSE, init = NULL)matrix; Design matrix, intercept term is added within the function
vector; Vector or factor with class assignments
matrix; Design matrix of the unlabeled data, intercept term is added within the function
numeric; Cost parameter of the SVM
numeric; Cost parameter of the unlabeled objects
numeric; parameter controlling the loss function of the unlabeled objects
logical; Should the features be centered?
logical; If TRUE, apply a z-transform to all observations in X and X_u before running the regression
numeric; Convergence criterion
logical; print debugging messages (default: FALSE)
numeric; Initial classifier parameters to start the convex concave procedure
Collobert, R. et al., 2006. Large scale transductive SVMs. Journal of Machine Learning Research, 7, pp.1687-1712.
Other RSSL classifiers:
EMLeastSquaresClassifier,
EMLinearDiscriminantClassifier,
GRFClassifier,
ICLeastSquaresClassifier,
ICLinearDiscriminantClassifier,
KernelLeastSquaresClassifier,
LaplacianKernelLeastSquaresClassifier(),
LaplacianSVM,
LeastSquaresClassifier,
LinearDiscriminantClassifier,
LinearSVM,
LogisticLossClassifier,
LogisticRegression,
MCLinearDiscriminantClassifier,
MCNearestMeanClassifier,
MCPLDA,
MajorityClassClassifier,
NearestMeanClassifier,
QuadraticDiscriminantClassifier,
S4VM,
SVM,
SelfLearning,
TSVM,
USMLeastSquaresClassifier,
WellSVM,
svmlin()