Implementation of Logistic Regression that is useful for comparisons with semi-supervised logistic regression implementations, such as EntropyRegularizedLogisticRegression.
LogisticRegression(X, y, lambda = 0, intercept = TRUE, scale = FALSE,
init = NA, x_center = FALSE)matrix; Design matrix for labeled data
factor or integer vector; Label vector
numeric; L2 regularization parameter
logical; Whether an intercept should be included
logical; Should the features be normalized? (default: FALSE)
numeric; Initialization of parameters for the optimization
logical; Should the features be centered?
Other RSSL classifiers:
EMLeastSquaresClassifier,
EMLinearDiscriminantClassifier,
GRFClassifier,
ICLeastSquaresClassifier,
ICLinearDiscriminantClassifier,
KernelLeastSquaresClassifier,
LaplacianKernelLeastSquaresClassifier(),
LaplacianSVM,
LeastSquaresClassifier,
LinearDiscriminantClassifier,
LinearSVM,
LinearTSVM(),
LogisticLossClassifier,
MCLinearDiscriminantClassifier,
MCNearestMeanClassifier,
MCPLDA,
MajorityClassClassifier,
NearestMeanClassifier,
QuadraticDiscriminantClassifier,
S4VM,
SVM,
SelfLearning,
TSVM,
USMLeastSquaresClassifier,
WellSVM,
svmlin()