## simulates tumor evolution
S = synthesis(10, 10, 2, seed=7)
## convert to 10-state matrix
seq = as.ten.state.matrix(S$seqeunce)
## runs the scelestial to generate 4-restricted Steiner trees. It represents the tree and graph
SP = scelestial(seq, mink=3, maxk=4, return.graph = TRUE)
SP
## Expected output:
# $input
# node sequence
# 1 0 AAXACAAXXA
# 2 1 AXXXAXAAXA
# 3 2 AXAXCAXXAX
# 4 3 AXCCCAXAAX
# 5 4 AXCXAXXCAX
# 6 5 XXCAXXXXXX
# 7 6 XACXACAAAC
# 8 7 AXAXXAXAXA
# 9 8 AXAAXXAXXX
# 10 9 AAXXXXCXCX
#
# $sequence
# node sequence
# 1 0 AAAACAAACA
# 2 1 AACAAAAAAA
# 3 2 AAAACAAAAA
# 4 3 AACCCAAAAA
# 5 4 AACAACACAC
# 6 5 AACAACAAAC
# 7 6 AACAACAAAC
# 8 7 AAAACAAACA
# 9 8 AAAACAAACA
# 10 9 AAAACACACA
# 11 10 AAAACAAACA
# 12 16 AACAAAAAAA
# 13 18 AACACAAAAA
#
# $tree
# src dest len
# 1 9 10 4.00006
# 2 8 10 3.00006
# 3 7 10 2.50005
# 4 0 10 1.50003
# 5 6 16 3.00002
# 6 1 16 2.50005
# 7 3 18 2.50003
# 8 0 18 1.50003
# 9 16 18 1.00000
# 10 0 2 3.50008
# 11 4 6 4.00007
# 12 5 6 4.50010
#
# $graph
# IGRAPH 6ba60f3 DNW- 13 12 --
# + attr: name (v/c), weight (e/n)
# + edges from 6ba60f3 (vertex names):
# [1] 9 ->10 8 ->10 7 ->10 0 ->10 6 ->16 1 ->16 3 ->18 0 ->18 16->18 0 ->2
# [11] 4 ->6 5 ->6
#
Run the code above in your browser using DataLab