## Estimate a restricted model
mymodel <- sienaModelCreate(fn=simstats0c, nsub=2, n3=100)
mynet1 <- sienaNet(array(c(s501, s502, s503), dim=c(50, 50, 3)))
mydata <- sienaDataCreate(mynet1)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip, balance)
ans <- siena07(mymodel, data=mydata, effects=myeff, batch=TRUE)
## Conduct the score type test to assess whether heterogeneity is present.
tt <- sienaTimeTest(ans)
## Suppose that we wish to include two time dummies.
## Add them in the following way:
myeff <- includeTimeDummy(myeff, recip, balance, timeDummy="2")
ans2 <- siena07(mymodel, data=mydata, effects=myeff, batch=TRUE)
## Re-assess the time heterogeneity
tt2 <- sienaTimeTest(ans2)
## And so on..
## A demonstration of the plotting facilities, on a larger dataset:
mymodel <- sienaModelCreate(fn=simstats0c, nsub=4, n3=500)
mynet1 <- sienaNet(array(c(s501, s502, s503, s501, s503, s502), dim=c(50, 50, 6)))
mydata <- sienaDataCreate(mynet1)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip, balance)
myeff <- includeTimeDummy(myeff, recip, timeDummy="2,3,5")
myeff <- includeTimeDummy(myeff, balance, timeDummy="4")
myeff <- includeTimeDummy(myeff, density, timeDummy="all")
ansp <- siena07(mymodel, data=mydata, effects=myeff, batch=FALSE)
ttp <- sienaTimeTest(ansp)
## Pairwise plots show
plot(ttp, pairwise=TRUE)
## Time test plots show
plot(ttp, effects=1:4, dims=c(2,2))
## A demonstration of RateX heterogeneity. Note that rate
## interactions are not implemented in general, just for
## Rate x cCovar.
mymodel <- sienaModelCreate(fn=simstats0c, nsub=2, n3=100)
mynet1 <- sienaNet(array(c(s501, s502, s503), dim=c(50, 50, 3)))
myccov <- coCovar(s50a[,1])
mydata <- sienaDataCreate(mynet1, myccov)
myeff <- getEffects(mydata)
myeff <- includeEffects(myeff, transTrip, balance)
myeff <- includeTimeDummy(myeff, RateX, type="rate",
interaction1="myccov")
ans <- siena07(mymodel, data=mydata, effects=myeff, batch=TRUE)
Run the code above in your browser using DataLab