if (FALSE) {
# A meta-analysis for three groups does not make much sense
# for generalizing to a population of networks,
# but the Fisher combinations of p-values are meaningful.
# However, using three groups does show the idea.
Group1 <- sienaDependent(array(c(N3401, HN3401), dim=c(45, 45, 2)))
Group3 <- sienaDependent(array(c(N3403, HN3403), dim=c(37, 37, 2)))
Group4 <- sienaDependent(array(c(N3404, HN3404), dim=c(33, 33, 2)))
dataset.1 <- sienaDataCreate(Friends = Group1)
dataset.3 <- sienaDataCreate(Friends = Group3)
dataset.4 <- sienaDataCreate(Friends = Group4)
OneAlgorithm <- sienaAlgorithmCreate(projname = "SingleGroups", seed=128)
effects.1 <- getEffects(dataset.1)
effects.3 <- getEffects(dataset.3)
effects.4 <- getEffects(dataset.4)
effects.1 <- includeEffects(effects.1, transTrip)
effects.1 <- setEffect(effects.1, transRecTrip, fix=TRUE, test=TRUE)
effects.3 <- includeEffects(effects.3, transTrip)
effects.3 <- setEffect(effects.3, transRecTrip, fix=TRUE, test=TRUE)
effects.4 <- includeEffects(effects.4, transTrip)
effects.4 <- setEffect(effects.4, transRecTrip, fix=TRUE, test=TRUE)
ans.1 <- siena07(OneAlgorithm, data=dataset.1, effects=effects.1, batch=TRUE)
ans.3 <- siena07(OneAlgorithm, data=dataset.3, effects=effects.3, batch=TRUE)
ans.4 <- siena07(OneAlgorithm, data=dataset.4, effects=effects.4, batch=TRUE)
ans.1
ans.3
ans.4
(meta <- siena08(ans.1, ans.3, ans.4))
plot(meta, which=2:3, layout = c(2,1))
# For specifically presenting the Fisher combinations:
# First determine the components of meta with estimated effects:
which.est <- sapply(meta, function(x){ifelse(is.list(x),!is.null(x$cjplus),FALSE)})
Fishers <- t(sapply(1:sum(which.est),
function(i){c(meta[[i]]$cjplus, meta[[i]]$cjminus,
meta[[i]]$cjplusp, meta[[i]]$cjminusp, 2*meta[[i]]$n1 )}))
Fishers <- as.data.frame(Fishers, row.names=names(meta)[which.est])
names(Fishers) <- c('Fplus', 'Fminus', 'pplus', 'pminus', 'df')
Fishers
round(Fishers,4)
}
Run the code above in your browser using DataLab