Learn R Programming

RStoolbox (version 0.1.6)

classifyQA: Classify Landsat8 QA Band

Description

extracts five classes from QA band: background, cloud, cirrus, snow and water.

Usage

classifyQA(img, type = c("background", "cloud", "cirrus", "snow", "water"), confLayers = FALSE, ...)

Arguments

img
RasterLayer. Landsat 8 OLI QA band.
type
Character. Classes which should be returned. One or more of c("background", "cloud", "cirrus","snow", "water").
confLayers
Logical. Return one layer per class classified by confidence levels, i.e. cloud:low, cloud:med, cloud:high.
...
further arguments passed to writeRaster

Value

Returns a RasterLayer with maximal five classes:
class
value
background
1L
cloud
2L
cirrus
3L
snow
4L
water
5L
Values outside of these classes are returned as NA. If confLayers = TRUE then a RasterStack with one layer per condition (except 'background') is returned, whereby each layer contains the confidence level of the condition.
Confidence
value
low
1L
med
2L
high
3L

Details

By default each class is queried for *high* confidence. See encodeQA for details. To return the different confidence levels per condition use confLayers=TRUE. This approach corresponds to the way LandsatLook Quality Images are produced by the USGS.

See Also

encodeQA decodeQA

Examples

Run this code
library(raster)
qa <- raster(ncol = 100, nrow=100, val = sample(1:2^14,  10000))

## QA classes
qacs <- classifyQA(img = qa)
## Confidence levels
qacs_conf <- classifyQA(img = qa, confLayers = TRUE)

Run the code above in your browser using DataLab