## Not run:
# library(caret)
# library(raster)
#
# ## Training data
# data(lsat)
# poly <- readRDS(system.file("external/trainingPolygons.rds", package="RStoolbox"))
#
# ## Split training data in training and validation set (50%-50%)
# splitIn <- createDataPartition(poly$class, p = .5)[[1]]
# train <- poly[splitIn,]
# val <- poly[-splitIn,]
#
# ## Classify (deliberately poorly)
# sc <- superClass(lsat, trainData = train, responseCol = "class", nSamples = 50, model = "mlc")
#
# ## Polish map with majority filter
#
# polishMap <- focal(sc$map, matrix(1,3,3), fun = modal)
#
# ## Validation
# ## Before filtering
# val0 <- validateMap(sc$map, valData = val, responseCol = "class", classMapping = sc$classMapping)
# ## After filtering
# val1 <- validateMap(polishMap, valData = val, responseCol = "class", classMapping = sc$classMapping)
# ## End(Not run)
Run the code above in your browser using DataLab