Compute the Z-value variable from a bivariate dataset.
zvalueRTDE(obs, omega, nbpoint, output=c("orig", "relexcess"),
marg=c("upareto", "ufrechet", "uunif"))# S3 method for zvalueRTDE
print(x, ...)
# S3 method for zvalueRTDE
summary(object, ...)
relexcess(x, nbpoint, ...)
# S3 method for default
relexcess(x, nbpoint, ...)
# S3 method for zvalueRTDE
relexcess(x, nbpoint, ...)
zvalueRTDE computes the Z-variable and
returns an object of class "zvalueRTDE"
having the following components type (either
"orig" or "relexcess"), omega,
Ztilde or Z, n, possibly m.
relexcess computes the relative excesses
from a Z-variable and returns an object of class "zvalueRTDE"
of type "relexcess".
bivariate numeric dataset.
a numeric for omega, see Details.
a numeric for the number of largest points to be selected.
a character string for the output:
either "orig" for original value
or "relexcess" for relative excess.
a character string for the empirical margin transformation:
either "upareto" for unit Pareto,
"ufrechet" for unit Frechet or
"uunif" for unit uniform margin.
an R object inheriting from "zvalueRTDE".
arguments to be passed to subsequent methods.
Christophe Dutang
Given a bivariate dataset \((X_i, Y_i)_i\) of \(n\) points,
two variables are defined:
(1) for output="orig", the \(\tilde Z_{\omega,i}\) variable
$$\tilde Z_{\omega,i} = \min \left(
f\left(\frac{R_i^X}{n+1}\right),
\frac{\omega}{1-\omega} f\left(\frac{R_i^Y}{n+1}\right) \right)
$$
where \(f(x)\) is the margin transformation and \(i=1,...,n\);
(2) for output="relexcess", the \(Z_{j}\) variable
$$
\frac{\widetilde Z_{\omega,n-m+j,n}}{\widetilde Z_{\omega,n-m,n}}
$$
where \(m\) equals nbpoint, \(j=1,\dots, m\),
and \(\widetilde Z_{\omega,1,n},...,
\widetilde Z_{\omega,n,n}\) are the order statistics of
\(\widetilde Z_{\omega,1},...,\widetilde Z_{\omega,n}\).
The margin transformation is
$$
f(x) = \frac{1}{1-x}, f(x) = \frac{1}{-\log(x)}, f(x) = x,
$$
respectively for unit Pareto (marg="upareto"),
unit Frechet (marg="ufrechet") and unit uniform margin
(marg="uunif").
C. Dutang, Y. Goegebeur, A. Guillou (2014), Robust and bias-corrected estimation of the coefficient of tail dependence, Volume 57, Insurance: Mathematics and Economics
This work was supported by a research grant (VKR023480) from VILLUM FONDEN and an international project for scientific cooperation (PICS-6416).
See fitRTDE for the fitting process and
dataRTDE for the data-handling process.
#####
# (1) example
omega <- 1/2
m <- 10
n <- 100
obs <- cbind(rupareto(n), rupareto(n)) + rupareto(n)
#unit Pareto transform
zvalueRTDE(obs, omega, output="orig")
relexcess(zvalueRTDE(obs, omega, output="orig"), m)
zvalueRTDE(obs, omega, nbpoint=m, output="relexcess")
Run the code above in your browser using DataLab