Learn R Programming

RTMBdist (version 0.1.0)

bccg: Box–Cox Cole and Green distribution (BCCG)

Description

Density, distribution function, quantile function, and random generation for the Box–Cox Cole and Green distribution.

Usage

dbccg(x, mu = 1, sigma = 0.1, nu = 1, log = FALSE)

pbccg(q, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)

qbccg(p, mu = 1, sigma = 0.1, nu = 1, lower.tail = TRUE, log.p = FALSE)

rbccg(n, mu = 1, sigma = 0.1, nu = 1)

Value

dbccg gives the density, pbccg gives the distribution function, qbccg gives the quantile function, and rbccg generates random deviates.

Arguments

x, q

vector of quantiles

mu

location parameter, must be positive.

sigma

scale parameter, must be positive.

nu

skewness parameter (real).

log, log.p

logical; if TRUE, probabilities/ densities \(p\) are returned as \(\log(p)\).

lower.tail

logical; if TRUE (default), probabilities are \(P[X \le x]\), otherwise \(P[X > x]\).

p

vector of probabilities

n

number of random values to return

Details

This implementation of dbccg and pbccg allows for automatic differentiation with RTMB while the other functions are imported from gamlss.dist package. See gamlss.dist::BCCG for more details.

References

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Examples

Run this code
x <- rbccg(5, mu = 10, sigma = 0.2, nu = 0.5)
d <- dbccg(x, mu = 10, sigma = 0.2, nu = 0.5)
p <- pbccg(x, mu = 10, sigma = 0.2, nu = 0.5)
q <- qbccg(p, mu = 10, sigma = 0.2, nu = 0.5)

Run the code above in your browser using DataLab