Learn R Programming

RTMBdist (version 0.1.0)

bcpe: Box-Cox Power Exponential distribution (BCPE)

Description

Density, distribution function, quantile function, and random generation for the Box-Cox Power Exponential distribution.

Usage

dbcpe(x, mu = 5, sigma = 0.1, nu = 1, tau = 2, log = FALSE)

pbcpe(q, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)

qbcpe(p, mu = 5, sigma = 0.1, nu = 1, tau = 2, lower.tail = TRUE, log.p = FALSE)

rbcpe(n, mu = 5, sigma = 0.1, nu = 1, tau = 2)

Value

dbcpe gives the density, pbcpe gives the distribution function, qbcpe gives the quantile function, and rbcpe generates random deviates.

Arguments

x, q

vector of quantiles

mu

location parameter, must be positive.

sigma

scale parameter, must be positive.

nu

vector of nu parameter values.

tau

vector of tau parameter values, must be positive.

log, log.p

logical; if TRUE, probabilities/ densities \(p\) are returned as \(\log(p)\).

lower.tail

logical; if TRUE (default), probabilities are \(P[X \le x]\), otherwise \(P[X > x]\).

p

vector of probabilities

n

number of random values to return

Details

This implementation of dbcpe and pbcpe allows for automatic differentiation with RTMB while the other functions are imported from gamlss.dist package. See gamlss.dist::BCPE for more details.

References

Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC, doi:10.1201/9780429298547. An older version can be found in https://www.gamlss.com/.

Examples

Run this code
x <- rbcpe(1, mu = 5, sigma = 0.1, nu = 1, tau = 1)
d <- dbcpe(x, mu = 5, sigma = 0.1, nu = 1, tau = 1)
p <- pbcpe(x, mu = 5, sigma = 0.1, nu = 1, tau = 1)
q <- qbcpe(p, mu = 5, sigma = 0.1, nu = 1, tau = 1)

Run the code above in your browser using DataLab