powered by
Returns a function that computes the log density of the bivariate Clayton copula, intended to be used with dcopula.
dcopula
cclayton(theta)
A function of two arguments (u,v) returning log copula density.
Positive dependence parameter (\(\theta > 0\)).
The Clayton copula density is $$ c(u,v;\theta) = (1+\theta) (uv)^{-(1+\theta)} \left( u^{-\theta} + v^{-\theta} - 1 \right)^{-(2\theta+1)/\theta}, \quad \theta > 0. $$
cgaussian(), cgumbel(), cfrank()
cgaussian()
cgumbel()
cfrank()
x <- c(0.5, 1); y <- c(0.2, 0.8) d1 <- dnorm(x, 1, log = TRUE); d2 <- dbeta(y, 2, 1, log = TRUE) p1 <- pnorm(x, 1); p2 <- pbeta(y, 2, 1) dcopula(d1, d2, p1, p2, copula = cclayton(2), log = TRUE)
Run the code above in your browser using DataLab