powered by
Returns a function computing the log density of the bivariate Gaussian copula, intended to be used with dcopula.
dcopula
cgaussian(rho = 0)
Function of two arguments (u,v) returning log copula density.
The Gaussian copula density is $$ c(u,v;\rho) = \frac{1}{\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} (z_1^2 - 2 \rho z_1 z_2 + z_2^2) + \frac{1}{2}(z_1^2 + z_2^2) \right\}, $$
where \(z_1 = \Phi^{-1}(u)\), \(z_2 = \Phi^{-1}(v)\), and \(-1 < \rho < 1\).
Correlation parameter (\(-1 < rho < 1\)).
cclayton(), cgumbel(), cfrank()
cclayton()
cgumbel()
cfrank()
x <- c(0.5, 1); y <- c(1, 2) d1 <- dnorm(x, 1, log = TRUE); d2 <- dexp(y, 2, log = TRUE) p1 <- pnorm(x, 1); p2 <- pexp(y, 2) dcopula(d1 , d2, p1, p2, copula = cgaussian(0.5), log = TRUE)
Run the code above in your browser using DataLab