Learn R Programming

RTMBdist (version 0.1.0)

gamma2: Reparameterised gamma distribution

Description

Density, distribution function, quantile function, and random generation for the gamma distribution reparameterised in terms of mean and standard deviation.

Usage

dgamma2(x, mean = 1, sd = 1, log = FALSE)

pgamma2(q, mean = 1, sd = 1, lower.tail = TRUE, log.p = FALSE)

qgamma2(p, mean = 1, sd = 1, lower.tail = TRUE, log.p = FALSE)

rgamma2(n, mean = 1, sd = 1)

Value

dgamma2 gives the density, pgamma2 gives the distribution function, qgamma2 gives the quantile function, and rgamma2 generates random deviates.

Arguments

x, q

vector of quantiles

mean

mean parameter, must be positive.

sd

standard deviation parameter, must be positive.

log, log.p

logical; if TRUE, probabilities/ densities \(p\) are returned as \(\log(p)\).

lower.tail

logical; if TRUE, probabilities are \(P[X \le x]\), otherwise, \(P[X > x]\).

p

vector of probabilities

n

number of random values to return.

Details

This implementation allows for automatic differentiation with RTMB.

Examples

Run this code
x <- rgamma2(1)
d <- dgamma2(x)
p <- pgamma2(x)
q <- qgamma2(p)

Run the code above in your browser using DataLab