data(dt4rtn)
# a few TFs for quick demonstration!
tfs4test<-dt4rtn$tfs[c("PTTG1","E2F2","FOXM1","E2F3","RUNX2")]
# create a new TNI object
rtni <- new("TNI", gexp=dt4rtn$gexp, transcriptionFactors=tfs4test)
## Not run:
#
# # preprocessing
# rtni <- tni.preprocess(rtni,gexpIDs=dt4rtn$gexpIDs)
#
# # permutation analysis (infers the reference/relevance network)
# rtni<-tni.permutation(rtni)
#
# # dpi filter (infers the transcriptional network)
# rtni<-tni.dpi.filter(rtni)
#
# # ..and a few candidate modulators for demonstration!
# mod4test<-rownames(rtni@gexp)[sample(1:nrow(rtni@gexp),200)]
#
# # conditional analysis
# rtni<-tni.conditional(rtni, modulators=mod4test, pValueCutoff=1e-3)
#
# #get results
# cdt<-tni.get(rtni,what="cdt")
#
# #get summary on a graph object
# g<-tni.graph(rtni,gtype="mmap")
#
# ###---------------------------------------------
# ### optional: plot the igraph object using RedeR
# library(RedeR)
#
# #--load reder interface
# rdp<-RedPort()
# calld(rdp)
#
# #---add graph and legends
# addGraph(rdp,g)
# addLegend.shape(rdp,g)
# addLegend.size(rdp,g)
# addLegend.color(rdp,g,type="edge")
# relax(rdp,p1=50,p5=20)
#
# ## End(Not run)
Run the code above in your browser using DataLab