# NOT RUN {
library(dplyr)
library(plyr)
library(Matrix)
for (i in c(24,25,26)) {
tic()
data <- data
histData <- histData.normz
predData_ann2 <- predData_ann_Baseline
predData_ann2 <- subset(
predData_ann2,
X == i,
select = c(Market.Volatility.Index..Level..normz
)
)
indVars = c("Market.Volatility.Index..Level..normz"
)
startDate = "1991-08-16"
endDate = "2007-08-16"
depVar <- c("end_rating")
pct <- 1
wgt <- "mCount"
ratingCat <- c("A", "B", "C", "D", "E", "F", "G")
defind <- "G"
ratingCat <- as.numeric(factor(
ratingCat,
levels = c('A', 'B', 'C', 'D', 'E', 'F', 'G'),
labels = c(1, 2, 3, 4, 5, 6, 7)
))
defind <- as.numeric(factor(
defind,
levels = c('A', 'B', 'C', 'D', 'E', 'F', 'G'),
labels = c(1, 2, 3, 4, 5, 6, 7)
))
method = "cohort"
snapshots = 1
interval = 1
hiddenlayers = c(1)
activation = "logistic"
stepMax = 1e9 #increase to make sure the DNN converges
calibration = "FALSE"
rept = 1
ann_TM <-
transForecast_ann(
data,
histData,
predData_ann2,
startDate,
endDate,
method,
interval,
snapshots,
defind,
depVar,
indVars,
ratingCat,
pct,
hiddenlayers,
activation,
stepMax,
rept,
calibration
)
print(ann_TM)
toc()
}
# }
Run the code above in your browser using DataLab