# NOT RUN {
library(dplyr)
library(plyr)
library(Matrix)
library(tictoc)
for (i in c(24, 25, 26)) {
print(paste("RUN-",i,sep=""))
data <- data
histData <- histData.normz
predData_svm2 <- predData_svm_Baseline
predData_svm2 <- subset(
predData_svm2,
X == i,
select = c(Market.Volatility.Index..Level..normz
)
)
indVars = c("Market.Volatility.Index..Level..normz"
)
startDate = "1991-08-16"
endDate = "2007-08-16"
depVar <- c("end_rating")
pct <- 1
wgt <- "mCount"
ratingCat <- c("A", "B", "C", "D", "E", "F", "G")
defind <- "G"
lstCategoricalVars <- c("end_rating")
tuning <- "FALSE"
cost <- 0.01
gamma <- 0.01
cost.weights <- c(0.01, 0.05, 0.1, 0.25, 10, 50, 100)
gamma.weights <- c(0.01, 0.05, 0.1, 0.25, 10, 50, 100)
kernelType <- "sigmoid"
method = "cohort"
snapshots = 1
interval = 1
svm_TM <-
transForecast_svm(
data,
histData,
predData_svm2,
startDate,
endDate,
method,
interval,
snapshots,
defind,
depVar,
indVars,
ratingCat,
pct,
tuning,
kernelType,
cost,
cost.weights,
gamma,
gamma.weights
)
print(svm_TM)
}
# }
Run the code above in your browser using DataLab