Learn R Programming

RUVcorr (version 1.4.2)

RLEPlot: Plots different versions of relative log expression plots

Description

RLEPlot generates three different types of relative log expression plots for high-dimensional data.

Usage

RLEPlot(X, Y, center = TRUE, name, title, method = c("IQR.points", "IQR.boxplots", "minmax"), anno = NULL, Factor = NULL, numeric = FALSE, new.legend = NULL, outlier = FALSE)

Arguments

X
A matrix of gene expression values.
Y
A matrix of gene expression values.
center
A logical scalar; TRUE if centering should be applied.
name
A vector of characters describing the data contained in X and Y.
title
A character string describing the title of the plot.
method
The type of RLE plot to be displayed; possible inputs are "IQR.points", "IQR.boxplots" and "minmax" (for information see details).
anno
A dataframe or a matrix containing the annotation of arrays in X and Y (only applicable for method="IQR.points"); if anno=NULL data points are not colored.
Factor
A character string corresponding to a column name of anno to be used for coloring.
numeric
A logical scalar indicating whether Factor is numerical.
new.legend
A vector describing the names used for labelling; if NULL labels in Factor are used.
outlier
A logical indicating whether outliers should be plotted; only applicable when method="minmax".

Value

RLEPlot returns a plot.

Details

There are three different RLE plots that can be generated using RLEPlot:
"IQR.points"
Median expression vs. inter-quantile range of every array.

"IQR.boxplots"
Boxplots of the 25% and 75% quantile of all arrays.

"Minmax"
Ordinary RLE plots for the 5 arrays with the smallest and largest inter-quantile ranges.

Note that normal RLE plots are not supplied as they are not very suitable for high-dimensional data.

Examples

Run this code
Y<-simulateGEdata(500, 500, 10, 2, 5, g=NULL, Sigma.eps=0.1,
250, 100, intercept=FALSE, check.input=FALSE)
Y.hat<-RUVNaiveRidge(Y, center=TRUE, nc_index=251:500, 0, 10, check.input=TRUE)
try(dev.off(), silent=TRUE)
par(mar=c(5.1, 4.1, 4.1, 2.1), mgp=c(3, 1, 0), las=0)
RLEPlot(Y$Y, Y.hat, name=c("Raw", "RUV"), title="", method="IQR.points")
try(dev.off(), silent=TRUE)
par(mfrow=c(1, 1))
RLEPlot(Y$Y, Y.hat, name=c("Raw", "RUV"), title="", method="IQR.boxplots")
try(dev.off(), silent=TRUE)
RLEPlot(Y$Y, Y.hat, name=c("Raw", "RUV"), title="", method="minmax")

#Create a random annotation file
anno<-as.matrix(sample(1:4, dim(Y.hat)[1], replace=TRUE))
colnames(anno)<-"Factor"
try(dev.off(), silent=TRUE)
RLEPlot(Y$Y, Y.hat, name=c("Raw", "RUV"), title="", method="IQR.points",
anno=anno, Factor="Factor", numeric=TRUE)

Run the code above in your browser using DataLab