Learn R Programming

RVAideMemoire (version 0.9-35)

cor.2comp: Comparison of 2 Pearson's linear correlation coefficients

Description

Perform the test for equality of 2 Pearson's correlation coefficients. If the difference is not significative, the function returns the common coefficient, its confidence interval and performs the test for equality to a given value.

Usage

cor.2comp(var1, var2, var3, var4, alpha = 0.05, conf.level = 0.95, theo = 0)

Arguments

var1
numeric vector (first variable of the first correlation).
var2
numeric vector (second variable of the first correlation).
var3
numeric vector (first variable of the second correlation).
var4
numeric vector (second variable of the second correlation).
alpha
significance level.
conf.level
confidence level.
theo
theoretical coefficient.

Value

  • method.testa character string giving the name of the global test computed.
  • data.namea character string giving the name(s) of the data.
  • statistictest statistics.
  • p.valuep-value for comparison of the 2 coefficients.
  • null.valuethe value of the difference in coefficients under the null hypothesis, always 0.
  • alternativea character string describing the alternative hypothesis.
  • estimatethe estimated correlation coefficients.
  • alphasignificance level.
  • conf.levelconfidence level.
  • common.namea character string explaining the elements of the table below.
  • commondata frame of results if the coefficients are not significantly different (common coefficient).

See Also

cor.test

Examples

Run this code
cor1.var1 <- 1:30+rnorm(30,0,2)
cor1.var2 <- 1:30+rnorm(30,0,3)
cor2.var1 <- (-1):-30+rnorm(30,0,2)
cor2.var2 <- (-1):-30+rnorm(30,0,3)
cor.2comp(cor1.var1,cor1.var2,cor2.var1,cor2.var2)

Run the code above in your browser using DataLab