## RWNN-object
n_hidden <- c(10, 15)
lambda <- 2
m <- rwnn(y ~ ., data = example_data, n_hidden = n_hidden,
lambda = lambda, control = list(lnorm = "l2"))
m |>
reduce_network(method = "relief", p = 0.2, type = "neuron") |>
(\(x) x$weights)()
m |>
reduce_network(method = "relief", p = 0.2, type = "neuron") |>
reduce_network(method = "correlationtest", rho = 0.995, alpha = 0.05) |>
(\(x) x$weights)()
m |>
reduce_network(method = "relief", p = 0.2, type = "neuron") |>
reduce_network(method = "correlationtest", rho = 0.995, alpha = 0.05) |>
reduce_network(method = "lamp", p = 0.2) |>
(\(x) x$weights)()
m |>
reduce_network(method = "relief", p = 0.4, type = "neuron") |>
reduce_network(method = "relief", p = 0.4, type = "weight") |>
reduce_network(method = "output") |>
(\(x) x$weights)()
## ERWNN-object (reduction is performed element-wise on each RWNN)
n_hidden <- c(10, 15)
lambda <- 2
B <- 100
# \donttest{
m <- bag_rwnn(y ~ ., data = example_data, n_hidden = n_hidden,
lambda = lambda, B = B, control = list(lnorm = "l2"))
m |>
reduce_network(method = "relief", p = 0.2, type = "neuron") |>
reduce_network(method = "relief", p = 0.2, type = "weight") |>
reduce_network(method = "output")
# }
# \donttest{
m <- stack_rwnn(y ~ ., data = example_data, n_hidden = n_hidden,
lambda = lambda, B = B, optimise = TRUE)
# Number of models in stack
length(m$weights)
# Number of models in stack with weights > .Machine$double.eps
length(m$weights[m$weights > .Machine$double.eps])
m |>
reduce_network(method = "stack", tolerance = 1e-8) |>
(\(x) x$weights)()
# }
Run the code above in your browser using DataLab