Cobweb(x, control = NULL)
FarthestFirst(x, control = NULL)
SimpleKMeans(x, control = NULL)
XMeans(x, control = NULL)
DBScan(x, control = NULL)Weka_control, or a
character vector of control options, or NULL (default).
Available options can be obtained on-line using the Weka Option
Wizard Weka_clusterers with components
includingjobjRef) to a Java object
obtained by applying the Weka buildClusterer method to the
training instances using the given control options.clusterInstance method for the built clusterer and each
instance).predict method for
class prediction from the fitted clusterers.
Cobweb implements the Cobweb (Fisher, 1987) and Classit
(Gennari et al., 1989) clustering algorithms.
FarthestFirst provides the SimpleKMeans provides clustering with the k-means algorithm.
XMeans provides k-means extended by an
DBScan provides the NA.
D. H. Fisher (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2/2, 139--172.
J. Gennari, P. Langley and D. H. Fisher (1989). Models of incremental concept formation. Artificial Intelligence, 40, 11--62. Hochbaum and Shmoys (1985). A best possible heuristic for the $k$-center problem, Mathematics of Operations Research, 10(2), 180--184.
Dan Pelleg and Andrew W. Moore (2006). X-means: Extending K-means with Efficient Estimation of the Number of Clusters. In: Seventeenth International Conference on Machine Learning, 727-734.
I. H. Witten and Eibe Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques. 2nd Edition, Morgan Kaufmann, San Francisco.
data("iris")cl1 <- SimpleKMeans(iris[, -5], Weka_control(N = 3))
cl1
table(predict(cl1), iris$Species)
cl2 <- XMeans(iris[, -5], c("-L", 3, "-H", 7, "weka.core.KDTree", "-P"))
cl2
table(predict(cl2), iris$Species)Run the code above in your browser using DataLab