Cobweb(x, control = NULL)
FarthestFirst(x, control = NULL)
SimpleKMeans(x, control = NULL)NULL
(default). Available options can be obtained on-line using the Weka
Option Wizard WOW, or the Weka documentation.Weka_clusterers with components
includingjobjRef) to a Java object
obtained by applying the Weka buildClusterer method to the
training instances using the given control options.clusterInstance method for the built clusterer and each
instance).predict method for
class prediction from the fitted clusterers.
Cobweb implements the Cobweb (Fisher, 1987) and Classit
(Gennari et al., 1989) clustering algorithms.
FarthestFirst implements the J. Gennari, P. Langley and D. H. Fisher (1989). Models of incremenal concept formation. Artificial Intelligence, 40, 11--62. Hochbaum and Shmoys (1985). A best possible heuristic for the $k$-center problem, Mathematics of Operations Research, 10(2), 180--184.
I. H. Witten and Eibe Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques. 2nd Edition, Morgan Kaufmann, San Francisco.
data(iris)
cl <- SimpleKMeans(iris[, -5], c("-N", "3"))
cl
table(predict(cl), iris$Species)Run the code above in your browser using DataLab