Weka_filters

0th

Percentile

R/Weka Filters

R interfaces to Weka filters.

Keywords
models, classif
Usage
Normalize(formula, data, subset, na.action, control = NULL)
Discretize(formula, data, subset, na.action, control = NULL)
Arguments
formula
a symbolic description of a model. Note that for unsupervised filters the response can be omitted.
data
an optional data frame containing the variables in the model.
subset
an optional vector specifying a subset of observations to be used in the fitting process.
na.action
a function which indicates what should happen when the data contain NAs.
control
an object of class Weka_control, or a character vector of control options, or NULL (default). Available options can be obtained on-line using the Weka Option Wizard
Details

Normalize implements an unsupervised filter that normalizes all instances of a dataset to have a given norm. Only numeric values are considered, and the class attribute is ignored. Discretize implements a supervised instance filter that discretizes a range of numeric attributes in the dataset into nominal attributes. Discretization is by Fayyad & Irani's MDL method (the default).

Note that these methods ignore nominal attributes, i.e., variables of class factor.

Value

  • A data frame.

References

U. M. Fayyad and K. B. Irani (1993). Multi-interval discretization of continuous-valued attributes for classification learning. Thirteenth International Joint Conference on Artificial Intelligence, 1022--1027. Morgan Kaufmann.

I. H. Witten and E. Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques. 2nd Edition, Morgan Kaufmann, San Francisco.

Aliases
  • Normalize
  • Discretize
Examples
## Using a Weka data set ...
w <- read.arff(system.file("arff","weather.arff",
	       package = "RWeka"))

## Normalize (response irrelevant)
m1 <- Normalize(~., data = w)
m1

## Discretize
m2 <- Discretize(play ~., data = w)
m2
Documentation reproduced from package RWeka, version 0.4-3, License: GPL-2

Community examples

Looks like there are no examples yet.