Class of Euclidean random matrices.
Objects can be created by calls of the form new("EuclRandMatrix", ...).
More frequently they are created via the generating function
EuclRandMatrix.
Dimvector of positive integers: Dimensions of the random matrix.
MapObject of class "list": list of functions.
DomainObject of class "OptionalrSpace"
domain of the random matrix.
RangeObject of class "OptionalrSpace"
range of the random matrix.
Class "EuclRandVariable", directly.
Class "RandVariable", by class "EuclRandVariable".
signature(from = "EuclRandMatrix", to = "EuclRandVarList"):
create a "EuclRandVarList" object from a Euclidean random matrix.
signature(x = "EuclRandMatrix"): generates
a new Euclidean random variable/matrix by extracting elements of
the slot Map of x.
signature(object = "EuclRandMatrix"): accessor function
for slot Dim.
signature(object = "EuclRandMatrix", ): replacement
function for slot Dim.
signature(x = "EuclRandMatrix"): number of columns of x.
signature(x = "EuclRandMatrix"): number of rows of x.
signature(object = "EuclRandMatrix"): dimension
of the Euclidean random variable.
signature(RandVar = "EuclRandMatrix", x = "numeric"):
evaluate the slot Map of RandVar at x.
signature(RandVar = "EuclRandMatrix", x = "matrix"):
evaluate the slot Map of RandVar at x.
signature(RandVar = "EuclRandMatrix", x = "numeric", distr = "Distribution"):
evaluate the slot Map of RandVar at x assuming
a probability space with distribution distr. In case x
does not lie in the support of distr NA is returned.
signature(RandVar = "EuclRandMatrix", x = "matrix", distr = "Distribution"):
evaluate the slot Map of RandVar at rows of x
assuming a probability space with distribution distr. For those
rows of x which do not lie in the support of distr
NA is returned.
signature(x = "EuclRandMatrix"): transposes x. In
addition, the results of the functions in the slot Map of
x are transposed.
signature(object = "EuclRandMatrix")
signature(x = "matrix", y = "EuclRandMatrix"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "numeric", y = "EuclRandMatrix"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "EuclRandVariable", y = "EuclRandMatrix"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "EuclRandMatrix", y = "matrix"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "EuclRandMatrix", y = "numeric"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "EuclRandMatrix", y = "EuclRandMatrix"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(x = "EuclRandMatrix", y = "EuclRandVariable"):
matrix multiplication of x and y. Generates
an object of class "EuclRandMatrix".
signature(e1 = "numeric", e2 = "EuclRandMatrix"):
Given a numeric vector e1, a Euclidean random matrix e2
and an arithmetic operator op, the Euclidean random matrix
e1 op e2 is returned.
signature(e1 = "EuclRandMatrix", e2 = "numeric"):
Given a Euclidean random matrix e1, a numeric vector e2,
and an arithmetic operator op, the Euclidean random matrix
e1 op e2 is returned.
signature(e1 = "EuclRandMatrix", e2 = "EuclRandMatrix"):
Given two Euclidean random matrices e1 and e2,
and an arithmetic operator op, the Euclidean random matrix
e1 op e2 is returned.
signature(x = "EuclRandMatrix"):
Given a "Math" group generic fct, the Euclidean random
matrix fct(x) is returned.
signature(object = "UnivariateDistribution", fun = "EuclRandMatrix", cond = "missing"):
expectation of fun under univariate distributions.
signature(object = "AbscontDistribution", fun = "EuclRandMatrix", cond = "missing"):
expectation of fun under absolutely continuous univariate distributions.
signature(object = "DiscreteDistribution", fun = "EuclRandMatrix", cond = "missing"):
expectation of fun under discrete univariate distributions.
signature(object = "MultivariateDistribution", fun = "EuclRandMatrix", cond = "missing"):
expectation of fun under multivariate distributions.
signature(object = "DiscreteMVDistribution", fun = "EuclRandMatrix", cond = "missing"):
expectation of fun under discrete multivariate distributions.
signature(object = "UnivariateCondDistribution", fun = "EuclRandMatrix", cond = "numeric"):
conditional expectation of fun under conditional univariate distributions.
signature(object = "AbscontCondDistribution", fun = "EuclRandMatrix", cond = "numeric"):
conditional expectation of fun under absolutely continuous conditional univariate distributions.
signature(object = "DiscreteCondDistribution", fun = "EuclRandMatrix", cond = "numeric"):
conditional expectation of fun under discrete conditional univariate distributions.
Matthias Kohl Matthias.Kohl@stamats.de
L1 <- list(function(x){x}, function(x){x^2}, function(x){x^3}, function(x){x^4},
function(x){x^5}, function(x){x^6})
L2 <- list(function(x){exp(x)}, function(x){abs(x)},
function(x){sin(x)}, function(x){floor(x)})
R1 <- new("EuclRandMatrix", Map = L1, Dim = as.integer(c(3,2)),
Domain = Reals(), Range = Reals())
dimension(R1)
R1[1:2, 2]
R1[1:2, 1:2]
Map(R1[1,2])
Map(t(R1)[2,1])
R2 <- EuclRandMatrix(Map = L2, ncol = 2, Domain = Reals(), dimension = 1)
dimension(R2)
(DL <- imageDistr(R2, Norm()))
plot(DL)
Map(gamma(R2)) # "Math" group
## "Arith" group
Map(2/R1)
Map(R2 * R2)
Run the code above in your browser using DataLab