Learn R Programming

RandomFields (version 1.0.15)

CovarianceFct: Covariance And Variogram Models

Description

CovarianceFct returns the values of an isotropic covariance function Variogram returns the values of an isotropic variogram model

PrintModelList prints the list of currently implemented models

GetModelNames returns a list of currently implemented models

Usage

CovarianceFct(x,model,param,dim=1)
Variogram(x,model,param,dim=1)
PrintModelList()
GetModelNames()

Arguments

x
a vector of distances at which the covariance function or variogram should be evaluated
model
character; name of the covariance function or variogram model; see below, or type PrintModelList() for all options
param
vector of parameters; param=c(NA,variance,nugget,scale,...), in this order; The dots ... stand for additional parameters of the model
dim
dimension of the space in which the model is applied

Value

  • CovarianceFct returns a vector of values of the covariance function. Variogram returns a vector of values of the variogram model. PrintModelList prints a table of the currently implemented covariance functions and the matching methods. PrintModelList returns NULL.

    GetModelNames returns a list of implemented models

Details

The first component of param is reserved for the mean of a random field and thus ignored in the evaluation of the covariance function or variogram. The parameters mean, variance, nugget, and scale must be given in this order; additional parameters have to be supplied in case of a parametrised class of models (e.g. hyperbolic, see below), in the order $\kappa_1$, $\kappa_2$, $\kappa_3$. The implemented models are in standard notation of a covariance function (variance 1, nugget 0, scale=1) and for positive real arguments $x$:
  • bessel$$C(x)=2^a \Gamma(a+1)x^{-a} J_a(x)$$The parameter$\kappa$is greater than or equal to$\frac{d-2}2$, where$d$is the dimension of the random field.
  • cauchy$$C(x)=\left(1+x^2\right)^{-\kappa}$$The parameter$\kappa$is positive. The model possesses two generalisations, thegencauchymodel and thehyperbolicmodel.
  • cauchytbm$$C(x)=\left(1+\left(1-\frac{\kappa_2}{\kappa_3} \right)x^{\kappa_1}\right) \left(1+x^{\kappa_1}\right)^{-\frac{\kappa_2}{\kappa_1}-1}$$The parameter$\kappa_1$is in (0,2],$\kappa_2$is positive, and$\kappa_3$is an integer. The model is valid for dimensions$d\le\kappa_3$. It allows for simulating random fields where fractal dimension and Hurst coefficient can be chosen independently. It has negative correlations for$\kappa_2>1$and large$x$.
  • circular$$C(x)= \left(1-\frac 2\pi \left(x \sqrt{1-x^2} + \arcsin(x)\right)\right) 1_{[0,1]}(x)$$This isotropic covariance function is valid only for dimensions less than or equal to 2.
  • cone This model is used only for methods based on marked point processes (seeRFMethods); it is defined only in two dimensions. The corresponding (boolean) function is a truncated cone with socle. The base has radius$\frac12$. The model has three parameters,$\kappa_1$,$\kappa_2$, and$\kappa_3$: $kappa_1$gives the radius of the top circle of the cone, given as part of the socle radius;$kappa_1\in[0,1)$. $kappa_2$gives the height of the socle. $kappa_3$gives the height of the truncated cone.
  • cubic$$C(x)=(1- 7x^2+8.75x^3-3.5x^5+0.75 x^7)1_{[0,1]}(x)$$This model is valid only for dimensions less than or equal to 3. It is a 2 times differentiable covariance functions with compact support. %(See Chiles&Delfiner, 1998)
  • exponential$$C(x)=e^{-x}, \quad x\ge0$$This model is a special case of thewhittlematernmodel (for$\kappa=\frac12$there) and thestableclass (for$\kappa=1$). %% \item\code{expPLUScirc} %% \deqn{\kappa_1 e^{-x} + %% (1-\kappa_1) %% \left(1-\frac2\pi %% \left(\frac xb\sqrt{1-(x/\kappa_2)^2}+\arcsin(x/\kappa_2)\right) %% \right) 1_{[0,1]}(x)}{ %% a exp(-x) + %% (1-a)(1-2/pi(x/b*sqrt(1-x^2/b^2)+asin(x/b))) if %% 0<=x<=1, 0="" otherwise}="" %%="" the="" parameter="" \eqn{\kappa_1}{a}="" is="" in="" \eqn{[0,1]}="" and="" \eqn{\kappa_2}{b}="" positive.="" this="" isotropic="" covariance="" function="" valid="" only="" for="" dimensions="" less="" than="" or="" equal="" to="" 2.<="" li="">
  • gaussian$$C(x)=e^{-x^2}$$This model is a special case of thestableclass (for$\kappa=2$there). Note that the corresponding function for the random coins method (cf. the methods based on marked point processes inRFMethods) is$$e^{- 2 x^2}.$$Seegneitingfor an alternative model that does not have the disadvantages of the Gaussian model.
  • gencauchy(generalisedcauchy) $$C(x)=(1+x^{\kappa_1})^{-\kappa_2/\kappa_1}$$The parameter$\kappa_1$is in (0,2], and$\kappa_2$is positive. This model allows for simulating random fields where fractal dimension and Hurst coefficient can be chosen independently.
  • gengneiting(generalisedgneiting) if$\kappa_1=1$then$$C(x)=\left(1+(\kappa_2+1)x\right) * (1-x)^{\kappa_2+1} 1_{[0,1]}(x)$$if$\kappa_1=2$then$$C(x)=\left(1+(\kappa_2+2)x+\left((\kappa_2+2)^2-1\right)x^2/3\right) (1-x)^{\kappa_2+2} 1_{[0,1]}(x)$$if$\kappa_1=3$then$$C(x)=\left(1+(\kappa_2+3)x+\left(2(\kappa_2+3)^2-3\right)x^2/5 +\left((\kappa_2+3)^2-4\right)(\kappa_2+3)x^3/15\right)(1-x)^{\kappa_2+3} 1_{[0,1]}(x)$$The parameter$\kappa_1$is a positive integer; here only the cases$\kappa_1=1, 2, 3$are implemented. The parameter$\kappa_2$is greater than or equal to$(d + 2\kappa_1 +1)/2$where$d$is the dimension of the random field.
  • gneiting$$C(x)=\left(1 + 8 sx + 25 (sx)^2 + 32 (sx)^3\right)(1-sx)^8 1_{[0,1]}(sx)$$where$s=\frac{10\sqrt2}{47}\approx 0.3$. This isotropic covariance function is valid only for dimensions less than or equal to 3. It is a 6 times differentiable covariance functions with compact support. It is an alternative to thegaussianmodel since its graph is visually hardly distinguishable from the graph of the Gaussian model, but possesses neither the mathematical and nor the numerical disadvantages of the Gaussian model. This model is a special case ofgengneiting(for$\kappa_1=3$and$\kappa_2=5$there).
  • gneitingdiff$$C(x)=\left(1 + 8 \frac x{\kappa_2} + 25 \frac {x^2}{\kappa_2^2} + 32 \frac {x^3}{\kappa_2^3}\right) \left(1-\frac{x}{\kappa_2}\right)^8 \;\frac{2^{1-\kappa_1}}{\Gamma(\kappa_1)} \,x^{\kappa_1} K_{\kappa_1}(x)1_{[0,\kappa_2]}(x)$$This isotropic covariance function is valid only for dimensions less than or equal to 3. The parameters$\kappa_1$and$\kappa_2$are positive. This class of models with compact support allows for smooth parametrisation of the differentiability up to order 6.
  • holeeffect$$C(x)=e^{-\kappa x} \cos(x), \quad x\ge0$$This model is valid for dimension 1 iff$\kappa\ge1$, for dimension 2 iff$\kappa\ge1$, and for dimension 3 iff$\kappa\ge \sqrt{3}$.
  • hyperbolic$$C(x)=\frac{1}{\kappa_3^{\kappa_2} K_{\kappa_2}(\kappa_1 \kappa_3)} \left(\kappa_3^2 +x^2\right)^{{\kappa_2}/2} K_{{\kappa_2}}\left( \kappa_1 \left(\kappa_3^2 + x^2\right)^{1/2}\right), \quad x>0$$The parameters are such that $\kappa_3\ge0$,$\kappa_1>0$and$\kappa_2>0,\quad$or $\kappa_3>0$,$\kappa_1>0$and$\kappa_2=0,\quad$or $\kappa_3>0$,$\kappa_1\ge0$, and$\kappa_2<0$. note="" that="" this="" class="" is="" over-parametrised;="" always="" one="" of="" the="" three="" parameters$\kappa_1$,$\kappa_3$,="" and="" scale="" can="" be="" eliminiated="" in="" formula.="" therefore,="" these="" parameters="" should="" kept="" fixed="" any="" simulation="" study.="" model="" contains="" as="" special="" cases="" thewhittlematernmodel and thecauchymodel, for$\kappa_3=0$and$\kappa_1=0$, respectively.
  • linear with sill Seepower(a=1there).
  • matern Seewhittlematern.
  • nugget$$C(x)=1_{{0}}(x)$$Here, eitherparam[2], thevariance, orparam[3], thenugget, must be zero.
  • pentamodel$$C(x)= \left(1 - \frac{22}3 x^2 +33 x^4 - \frac{77}2 x^5 + \frac{33}2 x^7 -\frac{11}2 x^9 + \frac 56 x^{11} \right)1_{[0,1]}(x)$$valid only for dimensions less than or equal to 3. This is a 4 times differentiable covariance functions with compact support. %(See Chiles&Delfiner, 1998)
  • power$$C(x)= (1-x)^\kappa 1_{[0,1]}(x)$$This covariance function is valid for dimension$d$if$\kappa\ge\frac{d+1}2$. For$\kappa=1$we get the well-known triangle (or tent) model, which is valid on the real line, only. % proposition 3.8 in phd thesis tilmann gneiting % Golubov, Zastavnyi
  • powered exponential Seestable.
  • qexponential$$C(x)=\frac{2 e^{-x}-\kappa e^{-2x}}{2-\kappa}$$The parameter$\kappa$takes values in$[0,1]$.

    % \item rational quadratic model\cr % See \code{cauchy} for \eqn{\kappa=1}{a=1}. % (Cressie)

  • spherical$$C(x)=\left(1- \frac32 x+\frac 12 x^3\right) 1_{[0,1]}(x)$$This isotropic covariance function is valid only for dimensions less than or equal to 3.
  • stable$$C(x)=\exp\left(-x^\kappa\right)$$The parameter$\kappa$is in$[0,2]$. Seeexponentialandgaussianfor special cases.
  • symmetric stable Seestable.
  • tent model Seepower.
  • triangle Seepower.
  • wave$$C(x)=\frac{\sin x}x, \quad x>0$$This isotropic covariance function is valid only for dimensions less than or equal to 3. It is a special case of thebesselmodel (for$\kappa=2$).
  • whittlematern$$C(x)=2^{1-\kappa} \Gamma(\kappa)^{-1} x^\kappa K_\kappa(x)$$The parameter$\kappa$is positive. This is the model of choice if the smoothness of a random field is to be parametrised. It is a special case of thehyperbolicmodel (for$\kappa_3=0$there).
Let $\rm cov$ be a model given in standard notation. Then the covariance model applied with arbitrary variance, nugget, and scale equals $$\rm \qquad nugget + variance * \rm cov( (\cdot)/ scale).$$ For a given covariance function $\rm cov$ the variogram $\gamma$ equals $$\gamma(x) = {\rm cov}(0) - {\rm cov}(x).$$ Note that the value of the covariance function or variogram depends also on RFparameters()$PracticalRange. If the latter is TRUE then the covariance function is internally rescaled such that cov$(1)\approx 0.05$ for standard parameters (scale==1). Some models allow certain parameter combinations only for certain dimensions. As any model in $d$ dimensions is also valid in 1 dimension, the default in CovarianceFct and Variogram is dim=1.

References

Overviews:
  • Chiles, J.-P. and Delfiner, P. (1999)Geostatistics. Modeling Spatial Uncertainty.New York: Wiley.
  • Gneiting, T. and Schlather, M. (2001) Statistical modeling with covariance functions.In preparation.
  • Schlather, M. (1999)An introduction to positive definite functions and to unconditional simulation of random fields.Technical report ST 99-10, Dept. of Maths and Statistics, Lancaster University.
  • Schlather, M. (2001) Models for stationary max-stable random fields.Submitted.
  • Yaglom, A.M. (1987)Correlation Theory of Stationary and Related Random Functions I, Basic Results.New York: Springer.
  • Wackernagel, H. (1998)Multivariate Geostatistics.Berlin: Springer, 2nd edition.

Cauchy models, generalisations and extensions

  • Gneiting, T. and Schlather, M. (2001) Stochastic models which separate fractal dimension and Hurst effect.Submitted.
Gneiting's models
  • Gneiting, T. (1999) Correlation functions for atmospheric data analysisQ. J. Roy. Meteor. Soc., Part A125, 2449-2464.
Holeeffect model
  • Zastavnyi, V.P. (1993) Positive definite functions depending on a norm,Russian Acad. Sci. Dokl. Math.46, 112-114.

Hyperbolic model

  • Shkarofsky, I.P. (1968) Generalized turbulence space-correlation and wave-number spectrum-function pairs.Can. J. Phys.46, 2133--2153.
Power model
  • Golubov, B.I. (1981) On Abel-Poisson type and Riesz means,Analysis Mathematica7, 161-184.
  • Zastavnyi, V.P. (2000) On positive definiteness of some functions,J. Multiv. Analys.73, 55-81.

See Also

EmpiricalVariogram, RandomFields, RFparameters, ShowModels.

Examples

Run this code
PrintModelList()
 CovarianceFct(0:100, "bessel", c(NA,2,1,5,0.5))

Run the code above in your browser using DataLab