DoSimulateRF
performs an already initialized simulation.
InitSimulateRF
internal function;
use InitGaussRF
and InitMaxStableRF
, instead. SimulateRF
internal function;
use GaussRF
and MaxStableRF
, instead.
DoSimulateRF(n=1, register=0)InitSimulateRF(x, y=NULL, z=NULL, grid, model, param,
method=NULL, register=0, gridtriple=FALSE,
distribution=NA)
SimulateRF(x, y=NULL, z=NULL, grid, model, param, method=NULL,
n=1, register=0, gridtriple=FALSE, distribution=NA)
x
,
y
, and z
should be
interpreted as a grid definition, see Details.CovarianceFct
, or
type PrintModelList()
to get all optionsparam=c(mean, variance, nugget, scale,...)
;
the parameters must be given
in this order; further parameters are to be added in case of a
parametrised class of models, see
NULL
or string; Method used for simulating,
see RFMethods
, or
type PrintMethodList()
to get all optionsgridtriple==FALSE
ascending
sequences for the parameters
x
, y
, and z
are
expected; if gridtriple==TRUE
triples of form
c(start,end,step)
expec"Gauss"
, "Poisson"
, or "MaxStable"
.InitSimulateRF
returns 0 if no error has occured during the
initialisation process, and a positive value
if failed.
SimulateRF
and DoSimulateRF
return NULL
if an error has occured; otherwise the returned object
depends on the parameters n
and grid
:
n==1
:
* grid==FALSE
. A vector of simulated values is
returned (independent of the dimension of the random field)
* grid==TRUE
. An array of the dimension of the
random field is returned.
n>1
:
* grid==FALSE
. A matrix is returned. The columns
contain the repetitions.
* grid==TRUE
. An array of dimension
$d+1$, where $d$ is the dimension of
the random field, is returned. The last
dimension contains the repetitions.GaussRF
, MaxStableRF
, RandomFields